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SECTION III: PROJECT APPRAISAL 

 
Project Objectives 
 
There were two broad objectives that were studied in this planning grant:  

1. Studying the vulnerability of the power grid to a society-targeted disinformation 
attack. 

2. Assessing the role of consumer behaviour in reinforcing the resilience of the power 
grid under emergency conditions such as blackouts. 

 
Both objectives have been achieved fully during the course of the project. There were no 
deviations from the original proposal. 
 
 
Results 
 
1. Vulnerability of the power grid to society-targeted disinformation attacks 
 
We analysed the possibility of an external adversary attacking a city’s power grid using 
disinformation, and not using other physical or cyber intrusions. In particular, we developed 
an attack scenario in which fake discount notifications are sent to residential consumers in 
the city. These notifications encourage the recipients to shift their energy consumption into 
the peak-demand period, which can potentially overload and trip the distribution lines. A 
schematic of such an attack is shown in Fig. 1. 
 

 
 

Fig. 1. A disinformation attack on the power system. 
 
We further considered the possibility that such an attack can be amplified by unwitting 
consumers who forward such disinformation to their friends, who in turn forward it to their 
own friends, and so on. This required the modelling of information propagation or diffusion 
through social networks. For this, two standard models of influence propagation were 
chosen, namely, independent cascade, and linear threshold. In the former, every exposure 
to the notification has an independent probability to persuade the recipient to modify their 
behaviour. In contrast, in the linear threshold model, each person has a threshold specifying 
the number of exposures required for them to modify their behaviour. These probabilities 
and thresholds constitute the parameters of the two models. 
 
To ensure that the probabilities of following-through and forwarding the notification in our 
simulation are realistic, we surveyed over 18,000 participants on the Amazon Mechanical 
Turk online crowdsourcing platform. Each participant was shown a message notifying them 
of a discount of 50% in their electricity rate during a specific time period and was then asked 
to specify the likelihood of them changing their electricity-use patterns to take advantage of 
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this discount. They were also asked to specify the likelihood that they would forward such 
messages to their friends. We tested two factors that may influence the behaviour of the 
participants: (i) the notification sender, and (ii) the notification content. As for the first factor, 
while such notifications are typically received from the power utility, we analysed the cases 
when they are instead received from either a stranger or a friend. We considered these two 
possibilities since some people may receive the spoofed message directly from the attacker 
(who is a stranger to them), while others may receive it indirectly through friends who 
forward it to them. As for the second factor---the notification content---we analysed two 
variants: one where the discount can only be availed by clicking on an external link, and 
another where the discount is unconditional. This manipulation allows us to understand the 
differences, if any, between the context of phishing and spam attacks---which require the 
recipients to click on an external link embedded in the message---and the context of our 
disinformation attack---where no such link is necessary. Accordingly, the participants were 
randomly assigned to one of four conditions: (i) receive a notification with a link from a 
stranger; (ii) receive a notification without a link from a stranger; (iii) receive a notification 
with a link from a friend; (iv) receive a notification without a link from a friend. The 
participants were further split into two groups depending on the influence model being 
studied (independent cascade or linear threshold), since the parameters of each model 
require the questions to be framed differently. 
 
We were cognizant of the possibility that the survey respondents may report higher 
probabilities of following-through or forwarding the disinformation notification when 
compared to their actual behaviour in reality. To mitigate this effect, we used three mapping 
functions: linear, squared, and cubic as shown in Fig. 2(a) to translate the reported 
propensities in the survey to the actual probabilities of the social network members in our 
simulations. To make simulations even more realistic, we modified the traditional diffusion 
process by capping the number of friends (k) a given person could forward the message to. 
The diffusion results are summarized in Fig. 2(b) and (c), which illustrate the different follow-
through levels achieved as the value of k varies from 1 to 3. Referring to Fig. 2(c), we found 
that the absence of a link in the message results in consistently higher follow-through rates 
when compared to those achieved by a message with an external link. For instance, up to 
10.9% increase in the follow-through rate can be achieved by the attacker just by avoiding 
framing of the disinformation using external links. 
 
We then analysed the impact caused by such behaviour manipulation on the power grid. To 
this end, we modelled the power grid of Greater London using map data (available online) 
and simulated the behaviour of residential energy consumers. Importantly, we consider the 
impact of residential electric vehicle (EV) charging, which adds a significant flexible load to 
the power system. The results of our analysis are shown in Fig. 3(a). This figure illustrates 
the size of the blackout that is caused by a disinformation attack for varying follow-through 
rate and EV adoption by the consumers. Note that in our analysis, EV adoption serves a 
synecdoche as well as a factor for the flexibility in the system demand.  
 
Our analysis provides insight into the impact of grid capacity upgrades on the vulnerability of 
the power grid to the attack under consideration here. The simulations in Fig. 3(a) assume 
that for each EV penetration level, the grid has already been upgraded to support the 
resultant increase in peak demand under normal conditions (i.e., no attack). In other words, 
the grid has been upgraded to support the increased peak demand that results from the 
adoption of the EVs. Clearly, the heat map illustrates that beyond a certain EV penetration 
level, increasing the capacity of the grid adds to the resilience of the power grid. This is 
because the increase in the grid resilience due to the increased line capacity more than 
compensates for the increased peak demand resulting from the attack. Fig. 3(b) and (c) 
show two snapshots of the grid, indicating the extent and spread of the blackout resulting 
from the attack. We find that these blackouts are spread city-wide due to the failure of local 
distribution lines due to overloading.  
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Fig. 2. Diffusion of the disinformation message through social networks. (a) Different 
mappings of the respondents’ reported probabilities to actual probabilities, (b) percentage of 
residents following-through on the disinformation notification, and (c) increased follow-
through due to the absence of external links in the notification. 
 
Overall, our simulations indicate that the need for future grid upgrades must not only be 
dictated by the technical aspects governed by physical laws, but also need to consider the 
behavioural aspects of the consumers who may act unpredictably and irrationally, especially 
when subject to disinformation.  
 
Further, note that after the fake notifications are sent out and before a blackout happens, the 
law enforcement and other governmental agencies have a window of opportunity to act, e.g., 
by broadcasting notices on local TV stations to warn the general public of the attack. In our 
scenario, to allow for the fake notification to propagate in the social network, the attacker 
was assumed to send the notification a few hours before the peak demand period, which is 
the time available for the authorities to act. However, if the fake notifications are sent out to a 
sufficiently large number of people to begin with, then the attacker need not rely on 
propagation at all. This, in turn, allows the attacker to send the notifications only a few 
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minutes before the peak demand period, thereby reducing the authorities' window of 
opportunity even further. As such, it is critical that any such attacks are detected as soon as 
possible, and any proposed mitigation strategy can be implemented at a short notice. 
 

 
 

Fig. 3. Impact of the disinformation attack on the power grid of Greater London. 
 
 
2. Grid-resilience assessment and reinforcement using consumer behaviour 
 
Firstly, we propose a comprehensive consumer behavioural model predicting load profiles 
under demand response implementations (considering both price-based demand response 
(PBDR) programs and incentive-based demand response (IBDR) programs).  
 
In PBDR programs, a customer will adjust their power consumption according to a pre-
received (e.g., day-ahead) price signal from the utility company. The load model of a PBDR 
program can be expressed as 
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where 𝜌𝜌0 and  𝜌𝜌 are the electricity price with PBDR and nominal electricity price, while 𝑑𝑑 and 
𝑑𝑑0 are the load with PBDR and initial load value, respectively. 𝐸𝐸(𝑖𝑖, 𝑗𝑗) is the cross elasticity 
between hours i and j. 
 
In IBDR programs, customers will adjust their power consumption according to a pre-
received (e.g., hourly-ahead) incentive for direct load control (DLC) or 
interruptible/curtailable (I/C services) from the utility company. 
 
For DLC, the load demand will be directly reduced by the utility. Thus, it is assumed that the 
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required reducing load value is equal to the actual reducing load value, which can be 
expressed as follows: 

, ,=DLC a DLC nD D∆ ∆  
where ∆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑎𝑎  and ∆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑛𝑛   denote the actual load reducing value and the required load 
reducing value in DLC program, respectively.  
 
For I/C services, customers adjust their demands to maximize their benefits (𝑆𝑆), which 
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Here, ∆𝐷𝐷𝐼𝐼𝐷𝐷,𝑎𝑎 and ∆𝐷𝐷𝐼𝐼𝐷𝐷,𝑛𝑛 are the actual load reducing value and the required reducing load 
value through I/C services, respectively. 
 
Thus, the end-use customer behaviour model in system resilience evolution can be 
expressed as: 
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where 𝜇𝜇𝑃𝑃 denotes the customers’ participation rate in PBDR during a large disturbance and 
𝜇𝜇𝐼𝐼 denotes the customers’ participation rate in IBDR during the same. 
 
The proposed customer responsive model comprises of three components: base load, the 
load change due to IBDR, as well as the load change due to PBDR. In order to get the 
specific model (mathematical expression) of 𝝁𝝁𝑰𝑰 and 𝝁𝝁𝑷𝑷, we designed a questionnaire survey 
to determine the relationship between customers’ classification and their acceptance rate of 
PBDR and IBDR when large disturbance or blackouts occurs.  
 
The general customers’ survey results are shown below in Fig. 4. Note that other parameters 
were obtained from research papers and reports. After data collection and analysis, 𝜇𝜇𝑃𝑃 and  
𝜇𝜇𝐼𝐼 can be calculated as follows: 

Base load 

 

 

Load change due to IBDR 

Load change due 
to PBDR 
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=0.531-0.054 -0.0147C -0.0462 +0.0393P A B C DC C Cµ  

=0.531-0.045 +0.0634C -0.0656 -0.0038I A B C DC C Cµ  
 

   
(a)                                                          (b) 

 

                    
(c)                                                           (d) 

 
Fig. 4. Customer survey data collection: (a) Family size. (b) Age. (c) Annual income. (d) 

Education level. 
 
Subsequently, the proposed end-use customer behaviour model is integrated into the multi-
timescale coordinated self-healing strategy for the power system.  
 
Our second work package aims to fully utilize the customers’ response and involvement to 
reinforce the power grid’s resilience. The approach covers the entire resilience evolution 
timeframe and is multi-timescale coordinated via multiple controllable resources. 

 
 

Fig. 5. The power grid’s resilience evolution trajectory. 
 
Fig. 5 shows a conceptual resilience trapezoid with customers’ participation, which clearly 
demonstrates the states (phases) of a power system subjected to an external disturbance 
Breaking the event into different stages (namely pre-disturbance, on-disturbance, post-
disturbance, and recovery stages) enables the dynamic multi-timescale resilience 
assessment. Demand response management (customers’ behaviour) will contribute to 
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improve the system stability and resilience through the pre-disturbance stage, post-
disturbance stage and the recovery stage. Thus, in this work package, a multi-timescale self-
healing strategy is firstly developed to optimally coordinate preventive, emergency, and 
corrective control means towards economic and resilience objectives. Preliminary 
simulations are conducted based on the IEEE 33-bus distribution network. 
 
In this work package, we propose a multi-timescale self-healing strategy for the power 
system: at the pre-disturbance stage, the objective is to optimally operate the system (e.g., 
minimizing operation costs, maximizing utilization rate of renewable energies, etc.) while 
providing sufficient reserve (e.g., emergency power support capacity). A PBDR strategy will 
be employed for load reduction. At the post-disturbance stage, the primary objective is to 
maintain the system’s static and dynamic security, and an integrated demand response 
support (including both IBDR and PBDR) are supplied. At the recovery stage, the objective is 
to rapidly restore the power supply, and a combination of corrective control actions such as 
generation restoration, and load recovery are investigated. The control actions among the 
three stages are integrated and coordinated. 
 

 
 

Fig. 6. Multi-timescale self-healing strategy. 
 
The proposed model is verified on a benchmark system, the IEEE 33-bus distribution radial 
system. To verify the advantages of the proposed self-healing strategy, two cases are 
compared here: 

Case 1: Base case. Here, no customers’ participation is considered. The 33-bus 
distribution system is operating without any DR strategy.  
Case 2: The proposed approach. DR strategies are employed to guide customers to 
contribute to the load shifting/reduction and so on.  

The simulation results for the three stages are shown below in Figs. 7-9. 
 

 
 

Fig. 7. Power loads under two cases in the Pre-Disturbance Stage. 
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It can be seen from Fig. 7 that power loads are slightly reduced after considering the 
demand response strategy, which means that the DR program can help modify the power 
loads profile so that the peak load can be shifted or reduced. Besides, it helps the power 
system to provide more reserve for the upcoming contingency. 
 

 
 

Fig. 8. Illustration of stable trajectories in the Post-disturbance Stage. (a) Case 1 without DR. 
(b) Case 2 with DR. 

 
In order to verify the validity of the proposed approach in the post-disturbance stage, we 
consider three different contingencies (C1, C2 and C3). The simulation results are shown in 
Fig. 8. For this dispatch solution, the stability margins under C1-C3 are given in Table 1. It 
can be concluded that after integrating the customers’ responsive model of the power 
system physical disturbance, the system becomes more stable.  
 

TSI Case 1 Case 2 
C1 -9.63 40.41 
C2 7.86 50.08 
C3 0.57 66.54 

 
Table 1. Transient stability margin under C1-C3. 

 
It can be seen from Fig. 9 that Case 2 takes lesser time to restore the load power to the 
original level. In Case 1, the restoration time is 9 minutes. Whereas in Case 2, it is only 7 
minutes, almost 22% faster than Case 1. This is mainly because after supplying incentives at 
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an attractive price, customers are more willing to turn on electric appliances, and thus they 
actively participate in the load restoration procedure, which is beneficial for the power 
system resilience. 

 

 
Fig. 9. Load restoration process in the Recovery Stage. 

 
In conclusion, a preliminary test has been conducted to validate the effectiveness of the 
proposed multi-timescale coordinated self-healing strategy for resilience reinforcement in 
power systems. Simulation results show that considering customers participation can indeed 
greatly enhance the power system resilience and stability. 
 
Challenges experienced in our research 
 
1. Assessing how consumers respond to disinformation in reality 
 
It was a challenge to ensure that our study modelled the behaviour of energy consumers in a 
realistic manner. Ideally, the methodology would be to identify a large group of residential 
households, install real-time power monitoring equipment in each, and subject a part of this 
group to disinformation messages in a controlled experiment. However, given the limitation 
of the project’s timeframe and practical considerations, we had to rely on a survey 
instrument to obtain data regarding consumer behaviour for our preliminary study. Though 
this survey-based technique is not ideal, we took precautions to correct for the possibility 
that survey respondents over-reported the extent to which their behaviour would change in 
response to a notification related to energy usage. In particular, we considered several 
mapping functions between the participants’ reported probabilities to the actual probabilities 
used in our influence propagation simulations. As such, performing a controlled field 
experiment that verifies our findings in this planning grant is an important part of our Full 
Proposal. 
 
2. Assessing how customers’ response and involvement can be fully utilized to reinforce the 
power grid’s resilience 
 
A second challenge was to bridge the end-user social behaviour (customer level), critical 
electric assets (component level), and the system operation (grid level). There is very less 
existing research on integrated resilience reinforcement, especially on modelling the impact 
of customer behaviour and interaction with the grid. Further, most of the methods are model-
based, which require detailed and accurate knowledge of the equipment and the system. As 
such, we have proposed a multi-timescale (pre-disturbance stage, post-disturbance stage 
and recovery stage) self-healing strategy for the power system. A combination of corrective 
control actions such as generation restoration, and load recovering were investigated in this 
planning grant. The control actions among the three stages were integrated and coordinated. 
Although this technique may not be the best way to combine customers’ behaviour and 
system operation, we conducted preliminary simulations to test its effectiveness.  




