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Abstract 

The deployment of phasor measurement units (PMUs) by power electric utilities to 

enhance the operating capabilities of state estimators is an emerging trend around the world. In the 

literature, several publications introduced PMU measurements into the current state estimators to 

boost their estimation accuracy. However, they could not replace all the existing conventional 

measurements due to their high cost. Instead, PMUs are being deployed gradually in few numbers 

by many utilities. One of the essential functions of a state estimator that could potentially benefit 

from PMU technology is bad data detection and identification. Bad data are gross errors coming 

from flawed measurement devices and has the potential to affect the estimation results leading to 

incorrect information of the system status. Therefore, state estimators are required to be equipped 

with advanced bad data detection techniques. One of the most commonly used bad data detection 

techniques is the largest normalized residual test (LNRT). However, it is known to fail with certain 

measurements known as critical measurements.  

In this thesis, a state estimator (SE) based on weighted least squares (WLS) was developed 

and evaluated against Iterative Kalman Filter (IEKF). For bad data detection, largest normalized 

residual test (LNRT) was integrated into the WLS estimator, and a detailed analysis of its detection 

threshold was evaluated. Finally, the LNRT capability was enhanced by incorporating PMU 

measurements at certain locations to enable it to detect bad data within critical measurements. An 

IEEE 14 Bus test system was simulated in Matlab under various scenarios. The results 

demonstrated the enhancement of LNRT detection capability by introducing few PMUs into the 

system and strategically placing them to eliminate critical measurements. This made LNRT detect 

and identify any bad data irrespective of its location. Moreover, variation of the value of detection 

threshold with redundancy ratio dictating against fixing the threshold was observed.  Generally, 
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the proposed technique showed an improvement on the bad data detection capability and state 

estimation results accuracy.  
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CHAPTER 1 
 

Introduction 
 

One of the key aspects to maintain the reliability of a large system such as the electric power grid 

is to provide feedback information to the control centers. Finding a way to accurately monitor the 

system has been the goal of power engineers for many years. If system operators can be provided 

with appropriate information regarding the conditions of the grid, they can make decisions that 

will improve not only the reliability of the system but also to plan more effectively for the future.  

State estimation (SE) is an outcome of electrical power engineering that evolved from these 

necessities. Ever since 1960’s, engineers begun developing techniques that could help them 

monitor the power network from control centers. They developed system models that represent the 

system structure and developed communication systems to collect the measurements. A computer 

then took these information and computed a best likely representation of the system operating 

conditions. The results are regarded as the system states. According to the results, a trained 

professional could understand what may be happening in the grid in near real-time.  

However, measurements could not always be trusted as even a single flawed measurement 

information could significantly alter the state estimation outcome and affect control decisions. In 

fact, a state estimator would not be a reliable application without its ability to detect and locate 

bad measurements. Therefore, to prevent such problems, engineers developed several techniques 
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to assess the flawed measurements. Depending on the type of SE algorithm employed bad data 

detection process are executed either pre or post estimation.  

In this thesis, the existing techniques and methodologies in the area of SE are reviewed and 

extended to enhance its robustness and reliability. This was done by improving the bad data 

detection capability and estimation accuracy of conventional state estimators by employing PMU 

measurements. The remainder of this Chapter presents the research motivation, research 

contributions, and thesis organization.  

 

1.1 Motivations and Relevance to Masdar/UAE 

Under the patronage of Abu Dhabi Government and directives for their master plan known as 

“Abu Dhabi Vision 2030”, ADWEA is fully committed to achieve the target of getting 7% of its 

network load to be supplied through renewable resources by year 2020. Due to the intermittent 

nature of renewable energy resources, it is required to maintain a close monitoring and control of 

the system states in order to deliver a secure and reliable power to consumers because failure to 

do so may cause blackouts.  

In order to achieve these objectives, it is crucial to accurately monitor the state of the power grid 

as the operating conditions continue to change during the daily operation. State estimation is 

therefore at the core of addressing the reliability of the power systems. 

State estimators should also be equipped with robust detection strategies in order to allow them to 

remove bad data. To achieve this need, strategic utilization of installed Phasor Measurement Units 

(PMUs) could enhance the bad data detection capability while also improving the estimates. This 

is the primary motivation of the thesis. 
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1.2 Research Contributions 

The main objectives of this thesis are to detect and eliminate bad data. This would ensure unbiased 

state estimations, which would facilitate proper execution of all other application functions that 

rely on state estimator outputs at the control center. However, despite having full observability, 

the system may have vulnerable areas that are called critical measurements. Errors in these 

measurements will not be detectable and poses a security concern. Therefore, one benefit of 

introducing redundant PMU measurements would be to let them transform these critical 

measurements into redundant ones. Thus, eliminating the vulnerability of critical measurements to 

bad data. 

In Summary, this thesis contributed the following investigations: 

Ø Detailed comparison of the estimation accuracy of Weighted Least Squares (WLS) 

against Iterative Kalman Filter (IEKF) 

Ø Exhaustive evaluations of the impact of detection threshold in LNRT on improving 

bad data detection   

Ø Incorporated PMUs into the estimator to improve LNRT effectiveness to detect bad 

data, and improve estimation accuracy as well 

The findings showed decent performance with a few drawbacks that are envisioned in the future 

work of this research.  

 

1.3 Thesis Organization 

A literature review on the developments, existing techniques and methodologies in the area of state 

estimation are reviewed in chapter 2. The third chapter presents the mathematical formulation of 

the algorithm employed by traditional state estimation techniques. It presents system modeling, 
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maximum likelihood estimation, weighted least squares estimation, and a brief discussion 

concerning the state estimator consisting of phasor and conventional measurements. The fourth 

chapter introduces various types of bad data and their impacts on the accuracy of SE. A 

mathematical model for bad data analysis is presented based on maximum normalized residual 

test. A comprehensive study of types of measurement and their effects on bad data is also 

discussed. The fifth chapter discusses the results of comparison between WLS and IEKF, 

investigation of detection threshold of LNRT, and improved LNRT capability using PMUs. Then 

chapter six presents the conclusions and future work of this thesis. 
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CHAPTER 2 
 

Literature Review 
 

Since the pioneering work of F.C. Schweppe in 1970 [1-3], SE has become an important function 

in supervisory control and planning of power grids. It helps monitor the state of the power grid, 

which is defined as the voltage magnitude and phase angle at each bus. SE lies at the heart of 

Energy Management Systems (EMS) which can perform various important control and planning 

tasks such as establishing near real-time network models, optimizing power flows, and bad data 

detection/analysis [4],[5, 6]. The EMS and supervisory control and data acquisition (SCADA) 

system are a set of computational tools used to monitor, control, and optimize the performance of 

a power system [7].  

The relationship between SE and the SCADA system is shown in Fig.2.1. The SCADA system 

obtains measurements from metering devices like remote terminal units (RTUs) and, more 

recently, phasor measurement units (PMU). Based on the measurements and a known system 

model, the state estimator calculates the system states and provides the necessary information to 

the supervisory control, which then takes action accordingly [6].  

The conventional SE is built into EMS and consists of four main processes as shown in Fig.2.1. 

The topology processor tracks the network topology and maintains a real-time database of the 

network model. Observability analysis is a process that is run to ensure if the measurement set is 

sufficient to perform SE. Finally, the bad-data processing identifies any gross errors in the 
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Fig. 2.1 Different elements of the EMS/SCADA 

measurement set and eliminates bad measurements. Moreover, the developments of the 

observability and bad data analysis are discussed in detail in the next sections. 

2.1  Overview of State Estimator Structure 

2.1.1 State Estimation 

Several methodologies in the areas of state estimations were developed over the past decades. 

Literature on the types of SE algorithms were presented in [5, 8-10]. SE also has different 

approaches based on application of the algorithms such as conventional SE [5], distributed SE or 

multi area SE (MASE) [11]. Depending on the timing and evolution of the estimates, SE schemes 

may be broadly classified into two basic distinct paradigms: static SE (SSE) and Dynamic SE 

(DSE) [6]. This section briefly discusses these two classification. 
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2.1.1.1 Static State Estimation 

If states variables are calculated from measurement set of the same time instant, then such 

estimator is known as SSE. This process is then repeated at suitable intervals of time in order to 

constantly know the status of the grid. SSE are widely used in power systems, and play an 

important role for the reliable and secure operation of transmission and distribution systems. One 

of the most commonly  used types of SSE in utilities is the weighted least squares (WLS) 

methodology [9]. It was formulated as an optimization problem with a notion of minimizing the 

squares of the differences between the measured and estimated values calculated using the 

corresponding power flow equations. The WLS uses the Newton-Raphson algorithm to obtain the 

state estimates. It is further explained in Chapter 3. 

There have been numerous findings on different variations of WLS further to improve specific 

aspects of the algorithm. Fast Decoupled State Estimator [12, 13] is an example in which voltage 

magnitudes and phase angles are processed separately. The voltage magnitude values are 

concerned with the reactive power measurements while angles were related to active power 

measurements. Regularized Least Square for power systems in [14] proposed a type of WLS that 

was able to function in cases of partial observability. Another extension of SSE also included the 

Sequential SE which has the advantage of being able to perform updates with partial measurement 

set [15]. This enabled the method to address the problem of data loss and bad data. An SSE 

algorithm based on linear programming known as Least Absolute Value (LAV) was also 

developed in [16, 17].  

Generally, under normal operating conditions, the power system is regarded as a quasi-static 

system that changes steadily but slowly  [8]. Therefore, in order to continuously monitor the power 

system, state estimators must be executed at short intervals of time. But with the inherent 
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expansion of power systems, with the increase of generations and loads, the system becomes 

extremely large for SE to be executed at short intervals of time since it requires heavy computation 

resources. Therefore, a technique known as Tracking SE [18, 19] was developed. Once state 

estimates were calculated, the method simply update the next instant of time using a new 

measurement set obtained for that instant, instead of again running the entire SSE algorithm. 

Tracking estimators help EMS to keep track of the continuously changing power system without 

actually having to execute the entire SE algorithm. This allows continuous monitoring with 

reasonable utilization of computing resources.  

2.1.1.2 Dynamic State Estimation (DSE) 

Although tracking is the simplest way of monitoring the changes, it does not include the physical 

modeling of the time behavior of the system [20]. This led for the development of DSE, where the 

physical model of the time-varying nature of the system would be considered. This type of 

algorithms has the advantage to predict the states of the system one-step ahead. Their forecasting 

ability provide advantages in performing security analysis and allows more time for the operator 

to take control actions [20]. However due to the mathematical modelling of the non-linearity of 

the system, DSE is computationally expensive and therefore is not widely implemented in the 

industry [21]. 

DSE algorithms consist of two steps known as the prediction and correction steps. The prediction 

of the state variables involves the modeling of the power system behavior and is calculated based 

on a mathematical model by considering the nonlinearities of the measurement functions [8]. The 

correction step acts like a filter to remove the measurement errors upon the arrival of 

measurements. 
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The Extended Kalman Filter (EKF) is the most widely used algorithm to perform DSE [22]. Other 

forms of kalman filters like Unscented Kalman Filter (UKF) [23], and Iterative EKF [24] were 

also proposed in the literature. Other algorithms used to perform DSEs include Artificial Neural 

networks (ANN) [25] and Fuzzy logic [26] which are also computationally complex. Generally 

DSEs are well suited when the dynamics of the power systems are smooth and follow the historical 

value. In other words, they could fail to accurately estimate when there exists a bigger changes in 

operating points. Hence, the SSE methodology is adopted in this thesis to fit the challenges stated 

previously.  

The work presented in this thesis adopts the work presented in [1-3, 27], where SSE based on WLS 

is used. It is then cascaded with a linear post-processing step [28] to include PMU measurements 

and enhance the bad data analysis. A detailed investigation of the detection threshold was also 

conducted. The developments on bad data analysis are discussed in the next sections. The IEKF 

based on the works on [29-31] is also adopted to compare the performance of the WLS estimator. 

2.1.2 Observability Analysis 

A minimum number of real-time measurements are needed to calculate and estimate the system 

states. An analytical way to determine if the available measurement data set are enough to estimate 

the states completely is known as observability analysis [32]. Observability analysis can be 

conducted using either fully-coupled or decoupled measurement equations. Use of fully-coupled 

model has its drawbacks, the non-uniqueness of the solution being one example [27]. Network 

observability analysis can also be achieved using topological or numerical methods. Topological 

methods use decoupled measurement model and graph theory. Numerical approaches may use 

fully-coupled or decoupled models. These methods are formulated using either branch or nodal 
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variables and are explained in [27]. The general numerical method which is developed based on 

branch variables were discussed in [33]. 

A complete theory of network observability was presented in [34]. Starting from a fundamental 

notion of the observability of a network, a number of basic facts relating to network observability, 

unobservable states, unobservable branches, observable islands, relevancy of measurements, etc. 

were discussed. On top of that, [35] presented a comprehensive observability or/and measurement 

placement algorithm based on [34]’s theory of network observability. This algorithm is able to 

deal with the diverse measurement classes: actual, virtual, pseudo, and quasi- available to state 

estimators in electric utility energy control centers. The algorithm was an extension of earlier SE 

functions and could handle large power networks.  

In the meantime, a new observability algorithm was developed by [36] to determine the phase-

angle observability of networks containing line-current-magnitude measurements. The main 

contribution of this method was its ability to process currents and thus facilitate their use to extend 

observable islands for a given system. It was shown that the proposed algorithm could be used to 

test observability of networks which would otherwise be unobservable by prior methods based on 

the rank of the measurement Jacobian. While the proposed procedure was developed only for 

phase-angle observability, it could be extended to cases where the redundant line currents would 

also be used to observe the voltage magnitudes. Determining observability of power networks 

based on artificial neural network technique was also proposed in [37]. 

2.1.3 Bad Data Analysis 

One of the essential functions of a state estimator is to detect bad measurements and to identify 

and eliminate them accordingly [38]. Bad data analysis could be performed during the estimation 
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process or post-estimation. When using the Weighted Least Squares (WLS) estimation algorithm 

for SE, detection and identification of bad data is done after the estimation process by processing 

the measurement residuals. The analysis is essentially based on the properties of the residuals, 

including their expected probability distribution.  

Chi-squares test for bad data detection was presented in [27],[39]. It uses the properties of the chi-

squares probability density function to compare with the objective function of WLS. Chi-squares 

was able to detect bad data but does not identify locations. 

Alternatively, Largest Normalized Residual Test (LNRT) was able to detect as well as identify the 

locations of occurrences [27] [38] and[40]. LNRT was developed based on the statistical 

characteristics of the measurement residuals. Detection and identification could also be 

accomplished by further processing of the residuals as in the Hypothesis Testing Identification 

(HTI) methods [27, 38, 41]. Although both methods used the residual sensitivity matrix to 

represent the sensitivity of the measurement residuals to the measurement errors, HTI was more 

complex and computationally costly due to the further processing of the residuals. Hence, LNRT 

was used to detect and identify bad data in this thesis.  

However, LNRT was observed to exhibit some limitations as noted in [27]. The primary limitation 

was the inability to track bad data if it occurred at critical locations. To resolve this issue, 

utilizations of PMU measurements were proposed in recent literature and are summarized in the 

upcoming section. 

2.2  Measurement and Communication Devices 

The field of monitoring and control of power systems are conventionally operated using SCADA 

systems [7]. The continuous growth of the power networks and increased integration of Variable 

Energy Resources (VER) triggered challenges to traditional SCADA systems. This led to the 
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introduction of new technologies such as PMUs [42]. Today, PMU technology serves as the next 

step in improving the quality of the estimate of the system states. They provide operators better 

information to maintain a high level of system reliability. As a result, PMUs have become a 

research focus for finding on better ways to integrate them into the state estimation problem as 

well as other power system applications [43-46]. While incorporating PMU measurements are still 

noticeably more expensive than traditional RTU approach, PMU deployment to build a hybrid 

setup with traditional SCADA systems may give additional operating benefits to SE. This is an 

emerging field of SE. 

2.2.1  Summary of PMU Technology 

A PMU or synchrophasor is a device that measures the electrical phasor in an electric grid using a 

common time source for synchronization. It provides real time information in a time-synchronized 

way, and is a solution to improve the monitoring, protection and control of future electric grid. In 

typical applications, PMUs are sampled from widely dispersed locations in the power network and 

synchronized from the common time source based on a global positioning system (GPS) [46]. It 

is possible to achieve synchronization accuracies of 1 µs or better. As one micro-second 

corresponds to 0.021o for a 60 Hz signal, such accuracies are perfect for measuring power 

frequency, voltages and currents [46]. A Block diagram of PMUs in power systems is shown in 

Fig.2.2. 
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Fig. 2.2 Block diagram of a PMU 

 

2.2.2 Integration of PMU measurements into State Estimation 

Conventional state estimations use measurements provided by SCADA systems that consist of bus 

voltage magnitudes, power flows and injections. These measurements are then related to state 

variables through measurement functions and the measurement noise. Subsequently, estimation 

algorithm is run to obtain the estimated state variables of the power system, which are the 

magnitude and phase angle of voltages at each bus. The most widely commercially used state 

estimation algorithm, which is nonlinear and iterative, is weighted least squares (WLS) [9].  

It was a prevalent idea in most of conventional SEs that the precise and simultaneous collection of 

measurements across the grid was something that could never be accomplished. The assumption 

that held conventional SE techniques together was the power system’s quasi-static nature; i.e. 

changing steadily but very slowly, in which operators could afford to have significant scan times. 

Although some estimators today have a scan time of only a few seconds, this could still be an 

eternity for several applications in the fields of protection and control [47]. To overcome these 

issues, integration of PMU measurements into SE is explored in recent years. 

Although it is evident that phasor based measurement system is a preferable technique to 

traditional state estimator techniques, it is recognized that in many cases one cannot provide as 
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sufficient PMU devices capable of achieving this goal. One of the major obstacles that hinder 

utilities from sufficient deployment of these devices is the prices associated with them [48].  

In response to the economic limitations, intensive researches are undergoing to utilize the 

emerging technologies in a best and optimized manner that could enhance the existing state 

estimation platforms. As a result, it has been shown that the addition of PMU measurements on 

top of the traditional ones could substantially increase the quality of the state estimates [49].  

A straight forward application of state estimation, used by most state estimators, treats PMU 

measurements to be supplements to traditional SCADA measurements. The resulting estimator 

once again follows a nonlinear, iterative solution scheme that needs significant modifications to 

the existing software to include PMU measurements. But, in [28] an alternative method for 

including phasor measurements in state estimators was proposed. This scheme preserves the 

original Energy Management Systems (EMS) software, and includes PMU measurements as a 

post-processing step. This approach takes the estimated states from the traditional SE and combine 

them with PMU measurements to conduct a second stage linear SE. Such approach would not 

require changes to be made to the existing software every time when new PMUs are installed into 

the network. Hence, making it more economical for utilities to adopt in reasonable matters. 

PMUs also play an important role in handling some deficiencies in the traditional measurement 

set. For example, in improving network observability [32, 35, 37, 50-56], aiding  bad data 

processing [40, 51, 57-61], and determining the network topology. 

It should be emphasized that this thesis focuses on the aspects of inclusion of PMUs on state 

estimation as a post-processing step. The motivation was to enhance the bad data detection 

capability while improving the accuracy of the state estimates. 
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2.3  Summary 

This chapter discussed the literature review on the developments and methodologies of the overall 

field of state estimation. The structure of state estimator package found in the EMS which consists 

of a topology processor, observability analysis, state estimation and bad data analysis was briefly 

discussed.  

The main objective of this thesis is improving the bad data detection capability and hence different 

techniques on the literature were reviewed. The most widely used detection test is based on the 

largest normalized residual test. However, it has limitations with setting detection threshold and 

when it comes to detecting certain type of measurements known as critical measurements. 

Therefore, this thesis addresses these issues in the coming chapters. The next chapter discusses the 

mathematical formulation of the estimators used in this thesis.  
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CHAPTER  3 
 

State Estimation Problem Formulation 
 

Power system state estimation is the process of determining the states of the power systems; which 

are the voltage magnitudes and voltage angles of each node. It is a mathematical calculation of the 

states based on measurements collected across the power network. While doing so, it assumed that 

the system topology is known.   

Another important application of state estimators is their ability to identify gross errors in 

measurement devices provided that there are enough redundant measurements. Moreover, the 

failure and/or the loss of a device or devices can also be detected. Topology of a network changes 

when a line is lost due to overloading or equipment failure [62]. In such a case, the security of the 

system might be in danger since some other lines might get overloaded as well. State estimation 

results can therefore give early warnings of such cases.   

This chapter discusses background of power systems and the basic mathematical modeling of 

various electrical components and followed by the formulation of the system admittance matrix. 

The model is then used in the formulation of state estimation algorithms and incorporation of 

phasor measurement units (PMUs) to improve estimation quality and enhance bad data detection 

capability. 
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3.1  Formulation of the System Model 

Several factors affect the state of the power system. They include system parameters like 

resistance, reactance and shunt susceptance of transmission lines. Measurements like real and 

reactive power injections, active and reactive power flows, measured voltages and network 

topology (assumed to be known) are also among those factors [27]. 

Measurements are sent periodically to control centers via SCADA system. But prior to 

implementation, the transmission line parameters and physical system model are carefully 

constructed offline. This section discusses the construction of detailed system model and 

mathematical representation of each component and build system matrices to be used in the state 

estimation formulations.  

3.1.1 Transmission line Model 

Transmission lines in power systems are three phase. A fully transposed transmission line is 

assumed with all the series and shunt devices being symmetrical in all the three phases. 

Generations and loads at each phase are also assumed balanced [27]. Therefore, single phase 

analysis is used to simplify the transmission line model, which is represented by a two-port pi 

model [63]. The equivalent circuit of the transmission line is shown in Fig. 3.1 connecting bus k 

to m. 

Using Kirchhoff’s law current injection in bus k and bus m can be written as 
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Fig. 3.1: Two-port π model of a transmission line 

Where,    
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y
+

=
1

 

3.1.2 Shunt Reactor and Capacitor Models 

Shunt reactors or capacitors are represented by their per phase susceptance value. They are mainly 

used for voltage and/or reactive power support. The type of the shunt element is determined by the 

value of the susceptance at the corresponding Bus. It is positive for a capacitor and negative for a 

reactor [27]. 

3.1.3 Tap Changing  Transformer Model 

Tap changing transformers are used to step up or step down voltage by a scalar quantity ‘a’ known 

as the tap ratio without affecting the voltage phase angle. It is modeled as a series impedance in 

series with an ideal transformer in between Bus k and Bus m as shown in Fig. 3.2. 

3.1.4 Generators and Loads Models 

Generators and loads are represented as power injections into their corresponding Buses and 

therefore have no effect. Generators are treated as positive injection and loads as negative injection.  
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Fig. 3.2: Equivalent circuit of a tap-changing transformer 

The following equations illustrate the relationship among the parameters of the transformer in 

figure 3.3.  

kva
v 1
1 =           (3.2)  

klm aii =           (3.3) 

)( 1 mlm vvyi -=          (3.4)  

Substituting v1 and ilm and re-arranging equations (3.2) - (3.4), we get 

)1( mkk vv
a

yai -=          (3.5)  

mkk v
a
yv

a
yi -= 2

         (3.6) 

And 

)( lmlmm vvyii -=-=         (3.7)  

Then substituting vl  

kmm v
a
yyvi -=      (3.8)  

Finally putting in matrix form, we get  
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Therefore using the above equations a simplified model as shown in Fig. 3.3 can be formulated.  
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Fig. 3.3 Equivalent circuit for an in-phase transformer tap changer 

Similarly when it is a phase shifting transformer the equations are changed slightly since unlike a 

tap-changer a phase-shifter has a complex tap ratio, represented by a below. Since the main 

purpose of a phase shifter is controlling the flow of power and prevent congestion, it creates a 

phase difference between the primary and secondary voltages. The changes in the equations are as 

shown below. 

kl v
a

v 1
=      (3.10)  

klm iai *=      (3.11)  

Substituting into the matrix, gives the following  
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   (3.12)  

3.2  Y-Bus Admittance Matrix formulation 

Referring to the modeled network parameters, we can now represent the entire power system as 

an admittance matrix commonly known as the Y-Bus matrix. A general Y-Bus representation of a 

system with N buses is shown in (3.13)  
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The Y-Bus is formulated using an admittance matrix. It is very difficult to populate the matrix with 

impedance values while it is easier to populate it with system admittances even by inspection. 

Kirchhoff’s current law is applied when populating the admittance matrices. The following two 

rules summarize the procedure to populate the Y-Bus by inspection. 

Ø The iith
 element of the Y-Bus denotes the sum of all admittances directly connected to Bus 

i. This includes shunt susceptances and shunt capacitors and reactors of the lines connected 

Bus i. 

Ø ijth
 element of the Y-Bus denotes the negative admittance of the line between Bus i and 

Bus j. 

After populating the Y-Bus matrix, we include the transformer parameters into the Y-Bus by 

modifying the Y-Bus corresponding to the locations of installed transformer. Consider a 

transformer between Bus k and Bus m, then four entries of the Y-Bus elements should be updated 

as: 

2|| a
yYY kk

new
kk +=      (3.14) 

*a
yYY km

new
km -=     (3.15) 

a
yYY mk

new
mk -=     (3.16) 

yYY mm
new
mm +=     (3.17) 
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3.3  Maximum Likelihood Estimation 

The main objective of state estimation is to estimate the most likely states of a power system based 

on a set of measurements. One way to accomplish this is to use maximum likelihood estimation 

(MLE), a method widely used in the field of statistics. MLE is the mathematical theory 

empowering state estimation techniques. It starts from creating the likelihood function of the 

measurement vector.  

Assuming the measurements are independent of each other, the likelihood function is simply the 

product of each of the probability density functions of each measurement. MLE aims to estimate 

the unknown parameters of each of the measurements’ probability density functions through an 

optimization [27]. It is commonly assumed that the probability density function (pdf) for 

measurement errors is the standard normal probability density function.   
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=
z

ezf     (3.18) 

where z is the random variable of the pdf, µ is the mean, and s  is the standard deviation. This 

function would yield the probability of a measurement being a particular value, z. Therefore, the 

probability of measuring a particular set of m measurements each with the same probability density 

function is the product of each of the measurements probability density functions, or the likelihood 

function for that particular measurement vector [27]. 
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Where zi  is the ith measurement and  
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 fm is called the likelihood function for z which is the measure of the probability of observing the 

specific set of measurements in vector z. Therefore, MLE’s objective is to maximize this function 

to determine the unknown parameters of the pdf of each measurement. This is done by maximizing 

the logarithm of the function, fm(z),  
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or minimizing the weighted sum of the squares of the residuals [27]  

Minimize 
2

1

)(å
=

-m

i i

iiz
s
µ  (3.22) 

This can therefore be written as: 

Minimize å
=

m

i
iiirW

1

2      (3.23) 

Subject to iii rxhz += )(     

Where W is the weighting factor given as Wii  = 2-
is . The solution to this problem gives us the 

weighted least squares estimator, which would be explained in the following subsection. 

3.4  Weighted Least Squares Based Estimator 

State estimators use information from measurements dispersed across the power grid to determine 

the most likely state variables. Measurement devices may have different accuracies and therefore are 

treated differently. Measurement error covariance is used to weight the accuracy of the measurements 

during this process, hence the name ‘weighted least squares’. The network system model and the set 

of measurements make up the equality constraints of the WLS optimization and make the problem 

specific to power systems.  
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Consider a measurement vector z with m number of measurements, which contain unknown 

measurement errors e associated with the limited accuracy of measurement devices. The errors are 

assumed to be independent to each other, and are normally distributed with an expected value of 

zero. Therefore, the equation relating measurements to system states x, containing n state variables, 

can be written as: 
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Whereh is a nonlinear equation relating the state vector x  to measurements z. The states are 

voltage magnitudes and angles of each node. As discussed in MLE, the solution to the state 

estimation problem is formulated as an optimization problem, whose objective function is denoted 

as J . As indicated in (3.25), the least squares errors of measurement residuals are weighted by their 

respective measurement error covariance specified by R. 
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i ii

ii
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xhzxJ

1

2))(()(     (3.25) 

Equation (3.25) represents the summation of the squares of the measurement residuals weighted 

by their respective measurement error covariance and can be rewritten as: 

)]([)]([
2
1)( 1 xhzRxhzxJ T --= -    (3.26) 

Where R is the diagonal matrix representing the measurement error covariance matrix, which is 

the weighting factor: 
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Where 2
is is the variance of each of the measurement errors which are assumed to be normally 

distributed and denoted as: ie ~ ),0( RN  for all i.  

Now, since our objective is minimization of the objective function J, we can find the derivative of 

J and set it to zero to find the minimum. Consider the derivative of J denoted by g(x) as: 

[ ])()()( 1 xhzRH
x
xJxg T --=

¶
¶

= -     (3.27) 

Where H is the measurement Jacobian matrix and is given by: 

x
xhxH

¶
¶

=
)()(      (3.28) 

Expanding the non-linear function g into its Taylor series around the state vector xk
 gives: 

0...))(()()( =+-+= kkk xxxGxgxg   (3.29) 

In which HRH
x
xgxG Tk 1)()( -=

¶
¶

=    (3.30) 

Then if we ignore the higher order terms of the series expansion, the differential of J gives a final 

iterative solution known as Gauss-Newton method given in (3.31)  

))(()( 111 kkTkkk xhzRHxGxx -+= --+    (3.31) 

Or substituting xD  

xxx kk D+=+1      (3.32) 
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• The measurement function h is constructed using the known system model which consist 

of branch parameters, network topology, and measurement locations and type.  

• Then measurement Jacobian H is found by differentiating h  with respect to state vector x.  

• R is the error covariance matrix holding information of the metering accuracy and should 

be formulated prior to computation.  

• k is the iteration index 

• G is called the gain matrix and is sparse, positive definite and symmetric provided that the 

system is fully observable. G is typically not inverted (the inverse will in general be a full 

matrix, whereas G itself is quite sparse). 

Flat start, i.e. setting the voltage magnitudes to one and phase angles to zero, is assumed for 

initializing the iteration and measurement function and jacobian are calculated accordingly. 

Iterations are carried out till a certain predefined threshold value is reached. 

3.5  Iterated Extended Kalman Filter (IEKF) based Estimator 

This section illustrates the formulation of the IEKF based estimator. Here the actual dynamics of 

the static states is formulated and hence a model for the transition of states needs to be generated. 

This model is then used to formulate the Kalman filter. Therefore a pseudo-dynamic model was 

generated through the linearization of the power flow equations as in [30] and shown in (3.33).  

ii
j

ijji jQPYVV +=å *
)~(~       (3.33) 

Where iV
~  is the complex voltage phasor at bus i, Yij is the (i,j)th elements of the Ybus matrix and 

Pi and Qi are the active and reactive power injections at bus i.  

Defining the active and reactive injections at each bus as a vector u:   
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and then rewriting (3.33) in terms of power injections u and state variables x, we can get (3.35). 

T
Qp uxguxguxg ]),(),([),( =      (3.35) 
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The piecewise linearization of (3.36) would then result to (3.37),  
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The partial derivatives can be further illustrated as: 
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Which is a Jacobian of the power flow equations and  
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An identity matrix. Substituting equations (3.38) and (3.39) in (3.37) and solving for the change 

in state variables xD , and rearranging we get: 
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Where eJk
1- corresponds to system process noise.  

Equation (3.40) is a pseudo-dynamic model of the system network. This equation is then used in 

the prediction step of the Kalman filter based estimator. In the prediction step, state variables are 

estimated using the previous states and corrected in the correction step when the measurement set 

is obtained [31]. This two-step estimation is shown as: 
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Where: 

• Pk is the state error covariance matrix at time step k  

• Q is process covariance matrix, approximations introduced to linearization of the process 

noise caused due to linearization errors. 

• Kk,i is the Kalman gain at time step k and iteration i.  

• R is the measurement covariance matrix 

• H is the Jacobian matrix of the measurement function h 

• z is measurement vector and  

• i is the iteration index in the correction step 
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3.6  Summary 

This chapter discussed the mathematical formulations of the state estimators used in this thesis. 

Modelling of the system network transmission lines, shunt reactors and capacitors, generators and 

loads leading to the formation of the admittance matrix was discussed in detail. The model was 

used for basic formulations of the WLS and IEKF estimation algorithms. The next chapter 

discusses bad data analysis and techniques proposed to improve detection and identification. 
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CHAPTER  4 
 

Bad Data Detection 
 

Measurements collected from across the network are used as input to state estimators to determine 

the best likely states of the system. This provides important information for monitoring and control 

functions whose objective is delivering secured and reliable power to customers. It is also 

important to suspect the reliability of the measurements which otherwise could affect estimation 

results. Therefore measurement error detection, identification and elimination should be an integral 

part of state estimators [27, 64]. There are four types of errors which state estimation algorithms 

should be able to handle [27].  

Ø Measurements errors: errors that exist due to limited accuracy of measurement 

devices 

Ø Topology errors: errors caused from an incorrect topological information  

Ø Parameter errors: errors caused from uncertainties in modelling parameter like line 

admittances   

Ø Bad data: large measurement errors caused due to malfunctioning, aging, bias or 

misconnection of measurement devices. 

Since the scope of this thesis is dealing with large measurement errors, hence this chapter discusses 

bad data caused by the fourth category (bad data) of error types. Treatment of bad data depends on 

the method of state estimation used in the implementation. With the commonly used WLS method, 

detection and identification of bad data are done after the estimation solution by analyzing the 
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measurement residuals. This chapter discusses bad data detection techniques on WLS and 

incorporating PMUs to improve the detection capability. 

Power systems have different measurement types spread across the grid. They have different 

properties and estimation results depend on their values and on their locations as well. There should 

be enough distribution of measurements to ensure network observability. 

4.1  Largest Normalized Residual Test (LNRT) 

Consider the linearized measurement equation, which is used at each iteration during the numerical 

solution of the WLS estimation problem: 

exHz +D=D        (4.1) 

Applying the optimization criterion, the following expression can be derived for the optimal state 

update: 

zRHG
zRHHRHx

T

TT

D=

D=D
--

---

11

111 )(ˆ
     (4.2) 

The estimated measurement calculated based on the estimated states is given by: 

zK
zRHHGxHz T

D=
D=D=D -- 11ˆˆ

     (4.3) 

Where 11 --= RHHGK T  is commonly known as the hat matrix since it gives z a hat and has the 

following property. 

HHK =×        (4.4) 

Measurement residuals can then be expressed as: 

zzr ˆ-D=        (4.5) 
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Where S =I-K, is called the sensitivity matrix and has the following property RSSRS T ×=×× . It 

represents sensitivity of measurement residuals to measurement errors. 

As discussed in previous sections, the measurement errors are assumed to have normal distribution 

and hence the statistic properties of the residual can then be derived as: 

• Mean: 0)()()( =×=×= eESeSErE  

• Covariance:   
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     (4.7) 

Where W  is the covariance matrix of the residual. 

Hence, measurement residuals are normally distributed with zero mean and W  covariance. W  is 

real and symmetric [2].  

The normalized residual for ith  measurement can be calculated as: 
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ii
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i ,...,1, =

×
=

W
=     (4.8) 

Where vector Nr has a standard normal distribution i.e. (0,1)~N .  

The measurement residual covariance matrix (W ) has some properties discussed in [2] one of the 

properties being determining the nature of measurements. If all elements of a row or a column are 

zero, then the measurement corresponding to that row or column is a critical measurement [27]. 
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Once residuals are normalized then they are tested for information on measurements for analysis 

processes such as bad data detection. Provided there is enough redundancy, the elements of the 

normalized residual rN are then compared to a predefined threshold and if there exists a value 

greater than the threshold, then the measurement corresponding to that residual is suspected to 

contain bad data and should be removed. The following steps are followed to detect and identify 

bad data using LNRT. 

§ Solve WLS problem and calculate measurement residuals ))ˆ(xhzr -=  

§ Calculate normalized residuals mi
SR

rr
r

iiii

i

ii

iN
i ,...,1, =

×
=

W
=  

§ Find the largest value N
kr  in the normalized residual corresponding to kth

 measurement; 

§ If e>N
kr then the kth measurement is identified as bad data otherwise, no bad data will be 

suspected. Here e  is the chosen identification threshold. 

§ Eliminate kth measurement and repeat state estimation process. 

4.2  Bad Data on Critical Measurements 

As stated in previous sections bad data coming from critical measurements is undetectable using 

conventional LNRT. Critical measurements can be identified from the property of the covariance 

matrix of the residualW . If all elements of a row or column of the matrix are zero, then the 

measurement corresponding to that row or column are critical measurements and cannot be 

detected. 

To improve this detection capability PMUs are strategically placed to add redundancy and remove 

critical measurements so that they are easily detected when containing gross errors [57, 64, 65]. 

Once they are no longer critical measurements they can easily be detected by the scheme. 
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PMU incorporation into an existing state estimation has been shown in several literatures. There 

are two types of methodologies for including PMUs into existing conventional state estimators 

namely: 

• Mixed PMUs and conventional measurements: in this scheme, a major change takes place 

in the existing state estimation software to accommodate the additional PMUs in the 

process, as illustrated in Fig.4.1 

• Post-processor: in this scheme PMUs are added as a linear problem after the conventional 

estimation process has already taken place. Here the existing estimation software remains 

untouched and instead, its estimated state results are used as inputs to the linear post 

processing process estimation as illustrated in Fig 4.2. The equivalence of both 

methodologies is shown in [28] 

 

Traditional 
Measurements

Revised SE

Estimator
States

PMUs
Measurements

 

Fig. 4.1 Mixed PMU with traditional measurements 
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Fig. 4.2 Post-processing step 

 

4.3  Incorporation of PMUs 

In this thesis, the post-processing step was implemented by strategically placing the PMUs to 

enhance the bad data detection capability by eliminating critical measurements while also 

improving the estimation results. Firstly the PMU measurements must be converted from polar to 

rectangular coordinates and the associated covariance matrix must be transformed accordingly 

[28].   

T
rect RxRx ')cov(')cov( =      (4.9) 

Where R is a rotation matrix used to transform the covariance matrix to correspond to rectangular 

coordinates instead of polar coordinates. Then, the calculated system state and the phasor 

measurement vector could be vertically concatenated and related to the system state by a linear 

equation. 

Then, the estimated system states from the conventional estimator serve as measurement inputs 

for the linear post-processor and are vertically concatenated with phasor measurements as: 
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Where xconv is the state vector obtained from the conventional state estimator represented in 

rectangular coordinates Vr  and Vi  as the real and imaginary voltages of each Bus and similarly 

pmurV _ and pmuiV _  are real and imaginary values of voltage measurements from PMUs. Ir and Ii are 

real and imaginary current values from PMUs. The new measurement vector znew is linearly related 

to the new state vector xnew by forming a Hnew   matrix as shown in (4.11) 
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The ‘I’ in the above equation represents a unit matrix, whereas the ‘ 'I ’ represents a unit matrix 

with zeros on the diagonal where no voltage phasors have been measured. In (3.11), it can be 

observed that the system state is identically related to the partition of the measurement vector 

which contains the calculated system state and identically related to the voltage phasor 

measurements in the measurement vector for those Buses that contain PMUs. 

The matrices C1 to C4 are composed of line conductance and susceptances for those lines where 

current phasor measurements are available. For example, consider the current measurement Ijk in 

line ‘jk’. Using the line admittance data used in chapter 2,  
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The ‘C’ matrices are similar to the Bus admittance matrix, with only those non-zero entries that 

correspond to lines where current phasors are measured. 

Equation (3.11) is a linear problem whose solution leads to a WLS solution given as: 

[ ] [ ] [ ]newnewnewnewnew
T

newnew zHRHRHx 111 ---=   (4.13) 

Where Rnew is the new covariance matrix which includes both the error models for the calculated 

system state and the phasor measurement vector converted to rectangular form. 
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    (4.14) 

 
It has been presented that strategic placement of PMUs [58] would alter critical measurements on 

conventional measurements into redundant measurements.  PMU measurements can be placed 

such that they add redundancy to the critical measurements as a result improving bad data detection 

capability for measurements which otherwise would have gone undetected. Thus, the new 

covariance matrix important for calculating the new normalized residual, can easily be formulated 

using the results of the post-processing step [64]. 

T
convnewconvconvnew HGHR 1--=W    (4.15) 
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4.4  Summary 

This chapter discussed bad data analysis on WLS based state estimator. LNRT was the technique 

used for the detection and identification. As discussed in previous chapters, LNRT has limitations 

with critical measurements. Incorporation of PMUs at selected locations as a post-processing step 

was proposed and discussed its formulation. The implementations and results are discussed in the 

next chapter. 
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CHAPTER  5 
 

Implementation and Evaluations  
 

The main objective of this chapter is to assess the enhanced bad data detection capability. 

Simulation results and observations to justify the implemented methodologies are presented. In 

Section 5.1, the system modelling and measurement generation are discussed and is followed by 

comparisons of WLS and IEKF methods in Section 5.2. Meanwhile, in Section 5.3, a detailed 

investigation of the detection threshold of LNRT is outlined. Finally, the merits of incorporating 

PMU measurements on performance of LNRT is demonstrated in Section 5.4. 

5.1  Overview of IEEE 14 Bus Test Case 

The system parameters for the IEEE 14 Bus test system used for evaluating the algorithms is 

shown in Figure 5.1. Power flow solutions were obtained using Matpower, and were applied as 

true values from which the measurement sets were obtained by adding errors. The collected 

measurements were active and reactive power injections, active and reactive power flows, and 

voltage magnitude for conventional measurements and voltage and current phasors for PMU 

measurements. 
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Fig.5.1 IEEE 14 Bus test system 
 

Measurements for conventional SE were collected such that the network becomes observable. An 

observable system allows the algorithm to converge to a unique solution. PMU measurements 

consisted of voltage and current phasors. The voltage phasors were directly obtained from the 

power flow solutions, whereas current measurement between Bus j and k were calculated as in 

(5.1) [63]: 

         (5.1) 

Errors based on a normal distribution were then added to the measurements as shown below: 

       (5.2) 

Where  is the measured value,  is the true value obtained from the power flow solution, 

‘randn’ is a Matlab function for generating normally distributed pseudorandom numbers with 

N(0,1) and is the standards deviation of the ith 
 measurement. The standard deviations used are 
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0.01 for voltage magnitude, 0.02 for power flow and injection measurements, and 0.0005 for PMU 

measurements.  

5.2  Comparisons of WLS Against IEKF 

The purpose of this study was to better understand the performance of WLS against another 

mainstream method known as the Iterative Extended Kalman Filter (IEKF). To summarize, IEKF 

uses past operating states to predict and estimate the current states. This required modelling the 

transition between the states, which made the algorithm more complex than WLS. In contrast, 

WLS takes only a snapshot of the current states, and does not include past state estimates into the 

computation. 

To evaluate the recursive nature of IEKF, assessments were carried out over several monitoring 

steps. In this study, measurements over 20 time steps were generated and used in the evaluations 

of IEKF and WLS. They were obtained from the system outlined in Section 5.1. The extracted 

load profile of Bus 4 is shown in Fig. 5.2. 

The parameters used in executing IEKF were: 

• Value of process noise Q associated with the linearization error was heuristically set to 0.1 

for its diagonal entries.  

• State error covariance matrix P was initialized to 10  for its diagonal entries  

• State vector x was initialized with a flat start condition. The angles were set to zero and 

magnitudes to 1. 
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Fig 5.2 Bus 4 load profile 

The state vector x for WLS was also initialized with a flat start, but it was reset in every time step. 

This was due to non-recursive nature of WLS. Fig 5.3 and 5.4 illustrate the procedures followed 

for executing each algorithm, respectively. 
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Fig. 5.3 Flow chart implemented IEKF procedures 
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Fig. 5.4: Flow chart of WLS 

 

The performances of IEKF and WLS are illustrated in Fig 5.5 and Fig 5.6. Fig. 5.5 shows the a 

posteriori, i.e. the state estimates of the correction step for Bus 4, while Fig. 5.5 shows the WLS 

state estimates of Bus 4. Comparing the results, it was evident that WLS was more accurate. One 

way to examine the accuracy of the estimated states was to determine the voltage mean absolute 

percentage error (V_MAPE) and angle mean absolute errors (ϴ_MAE) [63]. In this case, the 

V_MAPE and ϴ_MAE calculated using (5.3) demonstrated that IEKF had 0.0023 and 0.0983 

mean errors, respectively. On the other hand, WLS had 0.0011 and 0.0027 for voltage and angle 

estimations, respectively.   
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The results demonstrated that WLS estimation had more accurate voltage and angle mean errors 

than IEKF. The difference was significantly larger with angles errors than with magnitudes since 

the load changes were active power.  

 
(a) 

 

(b) 

Fig.5.5 Bus 4 estimations using IEKF 

Although IEKF was capable of predicting the next states based on the inputs and relationships of 

the past states, it was still trailing WLS in the overall state estimation accuracy. Moreover, IEKF 

contained more sensitive parameters and process noise introduced due to the approximation of the 

linearization process, and hence made the computation complex and error prone.  
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(a) 

 

(b) 

Fig.5.6 Bus 4 estimations using WLS 

5.3  Impact of LNRT Detection Threshold Values 

The objective is to study the variations of detection threshold of LNRT against: 

• Redundancy ratio and  

• Magnitudes of bad data 

This was to investigate and verify the variability of detection threshold as compared to fixing it at 

three, which is the conventionally default value used by state estimators [27]. This was done by 

changing the redundancy ratio of measurements, and individually injecting bad data of varying 

magnitudes into arbitrarily chosen sample measurements. Subsequently, the relationship between 
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bad data and detection threshold could be observed. Moreover, the relationship of detection 

threshold with the redundancy of measurements were also analyzed. Two test cases were built. 

Measurements were generated similar to the previous sections, but measurement redundancy was 

increased here such that there would be no critical measurements. This was because bad data on 

critical measurements would not be detected using LNRT [27].  

Referring to Table 5.1, the first column represents the redundancy ratio and is given as k = m/n. 

Note that m is number of measurements and n number of states. 

Table 5.1:  Minimum Errors and corresponding Detection Threshold 

Redundancy Ratio Measurement type Minimum Error Detection 
Threshold 

Case 1 k=1.7 

P4 0.042 0.748 
Q4 0.005 0.525 

P7-9 0.006 0.535 
Q4-5 0.031 0.542 

Case 2   k=2 

P4 0.039 0.744 
Q4 0.004 0.515 

P7-9 0.004 0.533 
Q4-5 0.029 0.517 

 

The measurement samples shown for both cases are active (P4) and reactive (Q4) power injections 

at Bus 4, active power flow from Bus 7 to 9 (P7-9), and reactive power flow from Bus 4 to 5 (Q4-

5). Simulations were carried out with incremental injection of errors on each measurement until 

the error was correctly detected and identified by LNRT. To be detected as bad data, its normalized 

residual should be the largest of all residuals. This is indicated in Table 5.1. There were two cases 

with k = 1.7 and k = 2. The middle column labeled ‘Minimum Error’ corresponds to the errors 

injected such that its detection threshold is reached, i.e. its residual becomes the largest. For 

example, the active power injection measurement in Bus 4 (P4) was identified as a measurement 
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with flawed data when the error added reached 0.042 p.u., making its corresponding normalized 

residual to become the largest with a value of 0.748. This was true when k = 1.7, and was lesser 

(0.744) for k = 2 and was true for all samples. This indicated that with variation of redundancy 

ratio k, the detection range would increase. Furthermore, the magnitude of error that were 

identified by LNRT (belong to the largest residual) also decreased (0.042 to 0.039) from Case 1 to 

Case 2.   

Table 5.2:  Gross Errors with a Detection Threshold larger than three 

Redundancy Ratio Measurement Type Gross Error (p.u.) Detection 
Threshold 

Case 1 k=1.7 

P4 0.138 3.017 
Q4 0.111 3.023 

P7-9 0.089 3.007 
Q4-5 0.117 3.017 

Case 2   k=2 

P4 0.131 3.003 
Q4 0.107 3.014 

P7-9 0.069 3.026 
Q4-5 0.111 3.067 

 

Now, supposed the sensitivity threshold was set to 3. Referring to Table 5.2, additional errors had 

to be injected to those specific measurements so that LNRT could correctly identify them when 

the threshold went beyond 3. Here, the ‘Gross Error’ column referred to the minimum magnitude 

of error that was injected to a measurement to be picked up by LNRT (meaning threshold > 3). It 

was observed that the amount of gross error decreases going from Case 1 to Case 2. This 

demonstrated the value of each measurement residual would vary with k, and contributed to the 

argument that the sensitivity threshold should not be fixed to a default value. Instead, it should be 

determined through extensive studies to extend the tracking capability of bad data detection. 
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Table 5.3:  State Estimations without Bad Data 
Bus Voltage (p.u) Angle (degrees) 

1 1.059 0.0 
2 1.044 -5.06 
3 1.010 -12.88 
4 1.017 -10.46 
5 1.018 -8.89 
6 1.069 -14.40 
7 1.058 -13.41 
8 1.088 -13.39 
9 1.051 -14.98 
10 1.047 -15.16 
11 1.054 -14.90 
12 1.043 -15.09 
13 1.028 -14.75 
14 1.023 -15.89 

 

For comparative purposes, Table 5.3 serves as a reference showing state estimates obtained 

without any bad data. Furthermore, Table 5.4 outlines estimation results when gross errors were 

added to the active power flow measurement P7-9 without defining a fixed sensitivity threshold. 

The error added to P7-9 in Table 5.4 was 0.042 such that the LNRT identified it as a measurement 

containing an error without fixing the detection threshold.  Lastly, Table 5.5 illustrates the same 

scenario, except a fixed sensitivity threshold of three was imposed. In Table 5.5, the error injected 

to P7-9 was 0.138, the minimum amount of error resulting a residual larger than 3. Note results of 

Table 5.4 and 5.5 are based on Case 1, where k = 1.7. From these results, state estimates were 

observed to deviate from expected values due to the error margin imposed by assigning a fixed 

sensitivity threshold of 3. The deviations were mainly captured in angle estimations. In addition, 

normalized residual of each measurement varied with changes in measurement redundancy. Hence, 

setting the detection threshold to a fixed value such as three was not effectively consistent in 

determining the occurrence of a bad data. 
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Table 5.4:  State Estimations with Bad Data injected into P7-9 
Bus Voltage (p.u) Angle (degrees) 

1 1.059 0.0 
2 1.044 -5.06 
3 1.010 -12.88 
4 1.017 -10.46 
5 1.018 -8.89 
6 1.069 -14.40 
7 1.058 -13.43 
8 1.088 -13.39 
9 1.051 -15.02 
10 1.047 -15.19 
11 1.054 -14.90 
12 1.043 -15.08 
13 1.029 -14.74 
14 1.023 -15.92 

 

Table 5.5:  State Estimations with Bad Data injected into P7-9 and fixed Detection Threshold 
Bus Voltage (p.u) Angle (degrees) 

1 1.059 0.0 
2 1.044 -5.07 
3 1.010 -12.88 
4 1.017 -10.49 
5 1.018 -8.90 
6 1.069 -14.48 
7 1.059 -13.52 
8 1.088 -13.28 
9 1.051 -15.43 
10 1.047 -15.52 
11 1.055 -15.08 
12 1.043 -15.15 
13 1.029 -14.82 
14 1.023 -16.18 
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5.4   Evaluation of the Improved LNRT Bad Data Detection using PMUs 

As noted in Chapter 2, critical measurements are measurements whose removal from the 

measurement set would make the system to become unobservable. Thus, bad data contained in 

these measurements cannot be detected using conventional LNRT. This section investigated the 

weakness of LNRT when dealing with critical measurements.  Subsequently, using PMU 

measurements to enhance the performance of LNRT was examined. Improvement on the accuracy 

of state estimation was also investigated. The procedures followed were as follows: 

• Identifying critical measurements from the measurement set 

• Examining the response of LNRT to bad data at these locations 

• Introducing PMUs at selected locations and  

• Re-examining LNRT values at critical measurements. 

Read measurements
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Calculate h(x), H, G and ΔX

Max |ΔX|<ε

Start
           

No

Xk+1 = Xk + ΔX

Test for Bad Data
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EndRemove/Replace 
Measurement
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Fig.5.7 Flow chart of LNRT procedure 
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From the observations made in Section 5.3, the detection threshold used for this study was set to 

1 to comfortably detect a range of bad data injections. The basic procedures of bad data detection 

using LNRT is illustrated in Fig. 5.7. The LNRT test would be carried out after the estimator 

converged to a unique solution. The performance of the proposed modifications are evaluated as 

follows.  

Firstly, the conventional state estimation results of voltage magnitudes and angles are shown in 

Table 5.6. Note that no bad data was added, and these results served as comparative references. 

Their estimation errors (compared with true values) are illustrated in Fig. 5.8. Overall they have a 

V_MAPE and a ϴ_MAE of 0.0137 and 0.3082, respectively.  

 
Table 5.6: Voltage magnitude and phase angle estimations 

Bus	 Voltage (p.u.)	 Angle (degrees) 
1 1.060 0.00 
2 1.045 -5.05 
3 1.011 -12.87 
4 1.017 -10.44 
5 1.019 -8.84 
6 1.050 -14.87 
7 1.059 -13.42 
8 1.086 -17.81 
9 1.033 -15.44 
10 1.029 -15.64 
11 1.036 -15.38 
12 1.023 -15.61 
13 1.009 -15.27 
14 1.004 -16.43 

 
Table 5.7: List of critical measurements 

Measurement Type Bus 
Active power injection (Pi) 8,10,11,14 

Reactive Power injection (Qi) 8,10,11,14 
Active power flow (Pij) 4-7, 6-11 

Reactive power flow (Qij) 4-7, 6-11 
 



61 
 

 
 

 
(a) 

 
(b) 

Figure 5.8: Voltage magnitude and phase angle errors in each bus 

 
 

Next, critical measurements were identified from the properties of the covariance matrix of the 

residuals. The list of critical measurements are shown in Table 5.7, and the corresponding LNRT 

values are outlined in Table 5.8. Bad data were then injected into active power flow from Bus 4 to 

Bus 7, to verify whether the LNRT could detect it. The resultant residuals are shown in Table 5.9. 

The largest normalized residual was 0.583 for both Table 5.8 and 5.9. This is below the threshold 

value, and therefore the injected bad data could not be detected. More importantly, the occurrence 
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of bad data within critical measurements caused the LNRT to fail to track the exact location of the 

bad data injection. The corresponding V_MAPE and ϴ_MAE were calculated as 0.015 and 1.38, 

respectively. Here, the ϴ_MAE increased significantly due to the occurrence of the bad data at the 

critical node in active power flow. This was reflected in each bus as shown in Fig. 5.9. 

 
Table 5.8: Normalized Residual rN without bad data 

Number Measurement Type rNconv 
(Without bad data) 

1 P2-3 0.58 
2 P1-2 0.57 
3 P2 0.55 
4 P2-5 0.55 
5 P4 0.27 

 

Table 5.9: Normalized Residual rN with bad data on P4-7 

Number Measurement Type rNconv 
(With bad data) 

1 Q12-23 0.58 
2 P4 0.57 
3 P10 0.55 
4 P11 0.55 
5 Q4 0.27 

 

Table 5.10: PMU locations and mean errors of estimated states 

Case PMUs at Bus V_MAE ϴ_MAE 
1 No PMUs 0.0097 0.308 
2 4,7,14 4.23*10-4 0.040 
3 8,10,14 2.84*10-4 0.023 
4 4,11,14 3.84*10-4 0.027 
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(a) 

 

(b) 

Figure 5.9: Voltage magnitude and phase angle errors in each bus with bad data on 
critical measurement 

 

Finally, the inclusion of PMU measurements in the post-processing step to enhance bad data 

detection at critical locations was investigated. PMUs were strategically placed such that: 

• They add redundancy and eliminate critical measurements and 

• Improve the state estimation results 
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The number of PMUs required to eliminate all critical measurements in the grid was heuristically 

found to be three. Accordingly, Table 5.10 shows three combinations that were able to fulfill the 

above two conditions. Among the results, Case 3 provided the best estimation accuracy, giving a 

V_MAE of 2.84x10-4
 and a ϴ_MAE of 0.02. This can also be observed in the state estimation 

errors in each bus as illustrated in Fig. 5.10. 

 

(a) 

 

(a) 

Figure 5.10: Voltage magnitude and phase angle errors in each bus with PMU 
measurements (Case 3)  
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In addition, Table 5.11 shows the new 5 largest normalized residuals that were obtained under the 

same bad data injection condition as of Case 1. The results showed that the largest normalized 

residual was 10.66, which was much larger than the detection threshold. In addition, the largest 

residual was computed at the location where bad data were injected. Thus, bad data in P4-7 could 

be correctly identified. The proposed integration of PMU measurements demonstrated to be an 

effective way to address bad data at critical locations. Subsequently, the estimated states of the 

grid could be further enhanced. 

Table 5.11: Normalized Residual rN_new with BD on P4-7  

Number Measurement Type rNnew 

1 P4-7 10.66 

2 ϴ1 10.64 

3 P4 6.48 

4 P2-5 4.74 

5 P2-4 2.99 
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CHAPTER  6 
 

Conclusions and Future Work  
 

 

State estimation is one of the most important Energy Management System applications in system 

operations. Its accuracy and operational robustness could potentially be further improved by 

utilizing PMU measurements. In this thesis a WLS based state estimator was developed and 

compared with IEKF based estimator. IEKF is a recursive algorithm that is more complex than 

WLS, which basically estimates based on taking a snapshot of the system at a particular time. The 

results of the comparison showed that WLS was more accurate since it has no process noise 

associated with the approximations introduced into the linearization of the process. However, 

IEKF was able to provide a prediction of the system states one-step ahead. 

Bad data detection based on LNRT was integrated into the WLS estimator and a detailed analysis 

of its detection threshold was conducted. The results demonstrated the variability of the detection 

threshold with redundancy ratio proving against fixing the threshold. This test was conducted to 

understand the detection threshold variability and it is difficult to draw the mathematical 

relationship of the threshold using this method. Finally, this thesis showed that combining PMU 

measurements with existing RTU measurements enhanced the bad data detection capability of 

LNRT. This improved the overall accuracy of the existing state estimator without the need to 

modify the existing platform. They were added as a linear post-processing step and significantly 
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improved the robustness of bad data detection capability. However, the placement of the PMUs 

should be in such a way that all critical measurements are eliminated. Otherwise, the LNRT could 

not be able to detect and identify bad data occurrence in such measurements. 

Optimal PMU placement problem was not the scope of this thesis. Nevertheless, it is considered 

as part of the future work. Moreover, the identification of critical measurements from the residual 

covariance matrix was not reliable and therefore, a more reliable technique to identify critical 

measurements should also be developed. 
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Appendix 
 

Test System Data 
 

Appendix I: Bus Data of IEEE 14 Bus Test System 

Bus no. Bus Type B V Angle 

1 1 0 1.06 0 
2 2 0 1.045 -4.98 
3 2 0 1.01 -12.72 
4 3 0 1.0186 -10.32 
5 3 0 1.0203 -8.78 
6 2 0 1.07 -14.22 
7 3 0 1.062 -13.37 
8 2 0 1.09 -13.37 
9 3 0.19 1.0563 -14.95 
10 3 0 1.0513 -15.1 
11 3 0 1.0571 -14.79 
12 3 0 1.0552 -15.08 
13 3 0 1.0505 -15.16 
14 3 0 1.0358 -16.04 

 

Type: 1 slack, 2 PV, 3 PQ 
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Appendix II: Line Data of IEEE 14 Bus Test System 

 
From Bus To Bus R (p.u) X (p.u) B/2 (p.u) Transformer Tap (a) 

1 2 0.01938 0.05917 0.0264 1 
1 5 0.05403 0.22304 0.0246 1 
2 3 0.04699 0.19797 0.0219 1 
2 4 0.05811 0.17632 0.0187 1 
2 5 0.05695 0.17388 0.017 1 
3 4 0.06701 0.17103 0.0173 1 
4 5 0.01335 0.04211 0.0064 1 
4 7 0 0.20912 0 0.978 
4 9 0 0.55618 0 0.969 
5 6 0 0.25202 0 0.932 
6 11 0.09498 0.1989 0 1 
6 12 0.12291 0.25581 0 1 
6 13 0.06615 0.13027 0 1 
7 8 0 0.17615 0 1 
7 9 0 0.11001 0 1 
9 10 0.03181 0.0845 0 1 
9 14 0.12711 0.27038 0 1 
10 11 0.08205 0.19207 0 1 
12 13 0.22092 0.19988 0 1 
13 14 0.17093 0.34802 0 1 
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