To mitigate the impact of climate change, the electrical power industry is undergoing rapid advances in new technologies such as renewable energy, advanced sensors, power electronics, and consumer-centric services. The opportunities for innovations and the challenges facing power utilities are more diverse than ever.

Our vision at PEng Lab is to continuously optimize and utilize the full potential of power grids, while providing necessary evaluation for integrating new technologies into the existing electrical infrastructures. We are motivated to develop solutions that enhance the security and reliability of energy systems, in particular power distribution systems and microgrids. The research portfolio of PEng Lab addresses a range of issues that changes with the time and the technology, even as the underlying expectations remain constant for electricity that is affordable, reliable and environmentally responsible.

Fig. Prototyped three-phase inverters, sensor circuits, control circuits, and microgrid



Our research focuses on the situational awareness, operational flexibility, and the cyber-physical security of high-voltage transmission networks, low-voltage distribution networks, and consumer microgrids. We also apply our expertise to a wider spectrum of applications such as the battery management system for electric vehicles, satellite power systems, reliability of traffic networks, and leakage detection in gas, oil and water pipelines. 

Highlights of our past projects include:

“We are like tenant farmers chopping down the fence around our house for fuel, when we should be using Nature’s inexhaustible sources of energy — sun, wind, and tide.”
“I hope we don’t have to wait until oil and coal run out before we tackle that.”
- Thomas Edison in a 1931 conversation with Henry Ford and Harvey Firestone


Project 1 (2016-2019): "Design of the Future Residential Apartment Microgrid"

An apartment with multiple residents can be considered as a microgrid with a set of subsystems that operate in a stochastic manner. The challenge is developing reliable power management strategies for both the residents and the building management. The objective is to formulate novel control algorithms to ensure stable power sharing among power electronic inverters. This project was funded by Singapore Ministry of Education Academic Research Funding Tier 1 grant.

Project 2 (2017-2018): "Event-Driven Methods for Demand Response in Electrical Grids"

We strive for a holistic view on demand response (DR) in electrical grids and address the research question of how to interlink advanced techniques in the electrical power engineering and computer science to support the decision making of power utilities. Specifically, the goal of the project is to assess the feasibility of integrating event stream processing and the stability analysis of electrical grids – a prerequisite for dynamic DR. This project was supported by NUS - HU Berlin joint research grant.

Project 3 (2018-2021): "A Comprehensive Design of Community Microgrid"

Design a hybrid microgrid suitable for future “smart” residential communities. Investigations will be carried to develop smart-grid functionality that increases the residential demand flexibility by tackling economical and behavioral aspects of consumer acceptance. In addition, implications of multi-microgrids connected to a common islanded distribution system are explored with the help of a simplified, but accurate model. This project is funded by Singapore Ministry of Education Academic Research Funding Tier 1 grant.

Project 4 (2018-2019): "Grid-Customer Integrated Resilience Assessment and Enhancement for Modern Power Systems"

A liberalized electric industry is a paradigm shift from utility-centric towards a customer-oriented environment. In such a scenario, demand-side parameters, including weather and customer behavior become non-electrical external influences that are coupled to the grid performance.This planning grant would enable us to design and implement surveys to generate data that assist us to populate our consumer behavioral model. We would then be equipped to quantify the impact of an attack on a real-world distribution system, and propose to the utility countermeasures to prevent, detect and mitigate such attacks. This project is supported by National Research Foundation Systemic Risk and Resilience grant.

Project 5 (2020-2025): "Data Networks in Cyber-Physical Systems"

The core purpose of a cyber-physical system is the gathering, distribution and sharing of data and the key question is how to make good use of such data. Through the deployment of advanced sensors like Phasor Measurement Units, system information can be gathered for online grid operations. Data enables identifying the state of individual components but also monitoring the state of the overall system. This requires turning the data into information, and based on such information define the actions to be taken. At the device level, by leveraging sensor data, system health conditions can be monitored in real-time, and faults can be detected and rectified at an early stage making the device more robust to external shocks but also avoiding negative impacts of a failure of the device onto the system. The objective is to focus on resilience centered preventive maintenance as opposed to purely cost optimization. At the system-level, data from sensors throughout the system can provide means to detect and eliminate fault conditions within the system, but also to define data-based local control decisions that can replicate the performance of a model-based optimal control approach. To ensure the reliability of the data, the sensor data should be continuously monitored to detect abnormal data. This project is funded by National Research Foundation Future Resilient Systems Program under Singapore-ETH Centre.


In Collaboration with...

© 2020 by Power Engineering Laboratory